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Spinning instability of gaseous detonations
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(Received 29 October 2001 and in revised form 11 March 2002)

We investigate hydrodynamic instability of a steady planar detonation wave propa-
gating in a circular tube to three-dimensional linear perturbations, using the normal
mode approach. Spinning instability is identified and its relevance to the well-known
spin detonation is discussed. The neutral stability curves in the plane of heat release
and activation energy exhibit bifurcations from low-frequency to high-frequency spin-
ning modes as the heat release is increased at fixed activation energy. With a simple
Arrhenius model for the heat release rate, a remarkable qualitative agreement with
experiment is obtained with respect to the effects of dilution, initial pressure and
tube diameter on the behaviour of spin detonation. The analysis contributes to the
explanation of spin detonation which has essentially been absent since the discovery
of the phenomenon over seventy years ago.

1. Introduction
Spin detonation in gases is one of the forms of multi-dimensional detonation

propagation. Its discovery was made by Campbell & Woodhead (1926, 1927). They
observed that detonation in tubes of circular cross-section in a stoichiometric mixture
of carbon monoxide and oxygen exhibits a highly luminous region which traces a
helical path along the periphery of the tube at a nearly constant angular frequency.
During its long history the spin phenomenon has been investigated in much detail
experimentally using photographic and smoke-foil techniques (see e.g. Voitsekhovskii,
Mitrofanov & Topchian 1963; Schott 1965). The structure of the spinning wave
close to the wall has been well established and is shown to represent complex Mach
configurations consisting of shock and detonation fronts and tangential discon-
tinuities. Only a few studies have been devoted to the study of the spin internal
structure. Rigorous theoretical and numerical studies of the spin are lacking, since
the spin detonation is inherently three-dimensional and thus challenging. Spinning
waves can be observed in slow combustion and their theoretical analyses can be
found in the literature: see, for example, Sivashinsky (1981), Matkowsky & Olagunju
(1982). Also, spin detonation is frequently observed in two-phase mixtures: see, for
example, Zhang & Gronig (1991). In this paper we focus on spin detonation in
gases.

The spin is an important regime of multi-dimensional detonation, both from
theoretical and practical points of view. From a theoretical perspective it can be
considered as one of the manifestations of a cellular detonation. From practical
considerations, the importance of knowing the mechanism of spinning detonation
stems from the fact that as a mainly marginal phenomenon it is accompanied by
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localized regions of extremely high pressure (e.g. about 170 p0 behind the spin head is
reported in Voitsekhovskii et al. 1963, where p0 is the pressure in the fresh mixture).
Obviously, such high pressures are to be avoided in many practical systems. Also, in
practice detonation waves often occur in some kind of a confinement and instability
predictions obtained for detonation in infinite space may have limited applicability
to such conditions. In particular, the spinning instability may have relevance to the
problem of the pulse-detonation engine which uses detonations that propagate in
cylindrical tubes. Therefore it is important to determine the effect of confinement on
the instability boundaries. The strategy developed below is for a cylindrical geometry,
but following similar ideas rectangular geometry can be handled without difficulty.

Despite the apparent significance of the problem, current understanding of the
spin detonation is at the level of qualitative speculations, so there exists a clear
need for a detailed look at fundamental mechanisms such as the instability of
perturbations to initially steady, planar detonation. It is now well known that for a
wide range of parameters one-dimensional detonations are unstable to both one- and
two-dimensional linear perturbations (see e.g. Erpenbeck 1964; Lee & Stewart 1990;
Bourlioux & Majda 1992, 1995; Short & Stewart 1998). This kind of instability has
an important relationship to the cellular structure of multi-dimensional detonations.
Except for Pukhnachev’s early work (1963), all the existing literature on detonation
stability that we are aware of is concerned with detonations extending to infinity in
both the longitudinal and lateral directions. Pukhnachev (1963) sets down the modal
problem for a detonation in a tube, but makes no mention of spin detonation.

The main phenomenological characteristics of the spin detonation are found in
the experimental literature. The structure of the spin detonation was most carefully
studied by Voitsekhovskii et al. (1963) and independently by Schott (1965). Using
photographic and smoke-foil techniques they investigated the complex details of
the structure of the spinning front near the wall. The spin structure as proposed by
Voitsekhovskii et al. (1963) and by Schott (1965) is schematically shown in figure 1(b).
The dark bands in figure 1(a), corresponding to the spin head DE in figure 1(b), show
schematically the smoke foil records left by a single-head spin detonation. In the case
of multiple-head spin, several transverse waves similar to ABCDE exist, which can
rotate in opposite directions and interact with each other creating cellular imprints
on the soot-foils.

The experiments by Bone, Fraser & Wheeler (1935), and Gordon, Mooradian &
Harper (1959) have shown that spin is a near-limit phenomenon occurring mostly in
mixtures near their detonability limits. Since the spinning wave moves along a helical
path, one of the easily measured characteristics of the spin is the pitch p of the helix,
which is the axial advancement of the detonation shock complex for one rotation of
the spin head. It was shown that for a given mixture composition the ratio of the
pitch to the tube diameter d, i.e. p/d, is independent of the diameter and is about 3
for most mixtures. When the detonation is initiated by a strong source which leads
to initial overdrive, it was observed that the occurrence of a spinning wave coincided
with the detonation velocity approaching the Chapman–Jouguet (CJ) value. Thus
an overdrive is likely to suppress spinning instabilities, like its well-known effect on
longitudinal as well as transverse instabilities. Gordon et al. (1959) contains extensive
measurements of p/d made in hydrogen–oxygen mixtures, either pure or diluted with
argon, nitrogen or helium at various initial pressures. In near-limit mixtures p/d was
always about 3, while in other mixtures it could take on different values, all ranging
between about 2 and 6. An example of a mixture with a high value of p/d is the
hydrogen–oxygen mixture diluted with helium at high initial pressures.
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Figure 1. (a) Sketch of a soot foil record left by a single-head spin detonation; (b) schematic
structure of the spin as proposed in Voitsekhovskii et al. (1963) and in Schott (1965): LS – leading
shock front, ABCDE – transverse detonation front (spin head), IZ – induction zone, RZ – thin
reaction zone behind the lead shock and behind the spin head, AB – the line of triple-shock
intersection; (c) the front view of (b). Bold arrows indicate the direction of propagation.

Low initial pressures of a mixture also favour formation of a steady spin. Generally,
at low pressures a single spinning front is observed, while an increase in pressure can
lead to the formation of several rotating fronts. For example, Duff (1961) observed a
single-head spin in a stoichiometric hydrogen–oxygen mixture in a 5/8 in. diameter
tube at initial pressure p0 = 3.99 mm Hg, while at p0 = 8.49 mm Hg a diamond-like
pattern was observed. As the pressure is increased, the general trend is that the
pattern becomes finer and usually very irregular; symmetrical patterns were found
to be rather uncommon and unstable. Duff attributes the diamond-shape of the
patterns to the interaction of multiple spinning shocks of different helicity, strength
and frequency. Duff’s investigations also include end-plate soot records which provide
certain evidence for the existence of multiple-head spins and their internal structure;
the records show that the spin discontinuity extends toward the tube centre and often
terminates at roughly half the radius from the wall.

Munday, Ubbelohde & Wood (1968) have investigated the effect of dilution on
the spin in hydrogen–oxygen mixtures diluted with argon, 2H2 + O2 + xAr. In a
certain range of argon dilution only a single-head spin was observed, while a decrease
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of argon concentration led to the occurrence of a multiple-head spin instead of a
single-head spin. Further decreases in the argon content led to a rippled chaotic front.

Manson (1946), Fay (1952), and Chu (1956) independently developed a simple
theory which was the best explanation of spin detonation. The basic underlying
idea of the theory is the assumption that the spinning detonation front is intimately
coupled to the acoustic field in the detonation products. The exact physical mechanism
of the coupling is left unexplained, but it is assumed that the frequency of one of
the first (typically the first) angular modes of acoustic waves in the tube is equal to
the rotation frequency of the spinning front. The CJ detonation model is assumed
with uniform profiles of pressure and temperature (except for acoustic perturbations)
behind the CJ plane. The solution of the wave equation in a tube involves three
eigenvalues which are determined by the boundary conditions at the wall and at the
CJ plane. Periodicity is assumed in the azimuthal direction, and the radial velocity
vanishes at the wall. An additional boundary condition which is needed to close the
problem is the assumption of a planar transverse vibration at the CJ plane. Although
no physical justification is given for the latter assumption, they obtain a formula for
the pitch-to-diameter ratio that is in rough agreement with experiments:

p

d
≈ γprod + 1

γprod

π

kn
. (1)

Here kn is the first root of the derivative of the Bessel function of the first kind. For
typical values of the adiabatic exponent γprod in detonation products, the formula gives
a value of about 3 for a single-head spin in close agreement with experimental results.
But the theory does not consider the reaction zone which is necessarily involved in
the mechanism of spinning instability.

In this work we study instability of the one-dimensional steady detonation in a
cylindrical tube subject to three-dimensional linear perturbations by the method of
normal modes. The mathematical formulation of the linear instability problem of spin
detonation and the solution technique is similar to that by Lee & Stewart (1990) used
to describe a one-dimensional instability analysis of gaseous detonations. One of the
main differences in the present work from recent past works is the use of cylindrical
coordinates. As we will explain, cylindrical coordinates impose a distinct form of the
condition at infinity. Also, the analogue to the transverse wavenumber has discrete
modes instead of having continuous variation.

In § 2 we present the governing equations and the scalings that are used throughout
the rest of the paper. Section 3 contains a brief discussion of the steady-state
one-dimensional solution. In § 4 we present the (linearized) form of the stability
equations. In § 5 we derive the radiation condition and discuss the variance of the
radiation condition with that found for Cartesian coordinates. In § 6 we present a very
brief discussion of the numerical technique used to find eigenvalues, eigenfunctions
and neutral stability curves. In § 7 we concentrate on results associated with neutral
stability boundaries and how our results are consistent with experimental observations
regarding the pitch ratio. Section 8 contains concluding remarks.

2. Governing equations
The governing equations are the Euler equations of gasdynamics for a reactive gas

medium, which can be written as

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0, (2)
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∂u

∂t
+ u · ∇u+

1

ρ
∇p = 0, (3)

∂h

∂t
+ u · ∇h− 1

ρ

∂p

∂t
= 0, (4)

∂λ

∂t
+ u · ∇λ = ω. (5)

The energy equation (4) is written in terms of the total enthalpy h = e+ p/ρ+ u2/2,
where e is the specific internal energy, p is the pressure, ρ is the density, u is the
velocity, ω is the reaction rate and λ is the reaction progress variable. An Arrhenius
simple-depletion form for the reaction rate law and an ideal thermal equation of state
are also assumed,

e =
1

γ − 1

p

ρ
− Qλ, ω = k(1− λ) exp(−E/RT ), p = ρRT . (6)

The energy equation can be rewritten in terms of pressure as

∂p

∂t
+ u · ∇p+ γp∇ · u− (γ − 1)Qρω = 0. (7)

The normal shock relations for the lead shock must be added to complete the
governing equations. We assume that upstream the fluid is motionless with u = 0,
and use a 0 subscript to label the upstream ambient state and an s subscript to label
the shocked state. Take v = 1/ρ to be the specific volume. Let D = Dn be the normal
shock velocity, where n is the outward unit normal to the shock. Let unit vectors t1, t2
lie in the tangent plane of n. Then for the ideal equation of state, with the previous
assumptions the shock relations can be written as

ρ(u−D) · n | 0 = ρ(u−D) · n | s = m, p− p0 = m2(v0 − vs),
u · t1 | s = 0, u · t2|s = 0,

γ

γ − 1

p0

ρ0

+
D2

2
=

γ

γ − 1

ps

ρs
+

(u−D)2

2
, λs = 0.

 (8)

Next we scale the variables and develop the dimensionless form for the governing
system. Dimensional scales are based on the one-dimensional steady detonation wave.
The density, pressure and velocity scales are steady detonation shock density, pressure
and sound speed, ρs, ps and cs. The length scale is chosen to be the steady half
reaction zone length, `1/2, i.e. for a chosen steady detonation, the length behind the
shock for the reaction progress variable to reach one half. The time scale is the length
scale divided by the velocity scale, `1/2/cs. To simplify our notation we now use a
tilde to represent dimensional quantities, a plain variable to represent dimensionless
quantities, an asterisk to identify quantities of the one-dimensional steady state and
b subscript to refer to the states at the end of the reaction zone.

3. The one-dimensional steady state
The one-dimensional steady state is found simply from integrating the conservative

form of the governing equations in a frame moving with the detonation, which gives
the ZND detonation structure. We follow the presentation found in Lee & Stewart
(1990) and the results are given again for convenience. If u∗ is the particle velocity
in the steady frame, and p∗ and ρ∗ are the steady pressure and density, these are
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expressed in terms of λ∗ by

p∗ = a+ (1− a)√1− bβλ∗, u∗ =
1− p∗
γMs

+Ms, ρ∗ =
Ms

u∗
, (9)

where Ms = ũ∗s /c̃∗s is the Mach number behind the shock as seen from an observer
riding the shock. It is useful to introduce D = D̃∗/c̃0 to represent the steady Mach
number of the detonation relative to an observer in the ambient material or lab-frame.
The constants a and b, and the relationship between Ms and D are given by

a =
1 + γM2

s

γ + 1
, b =

2γ(γ − 1)M2
s

(γ + 1)(1− a)2
, M2

s =
2 + (γ − 1)D2

2γD2 − (γ − 1)
. (10)

At the shock front the steady-state variables satisfy

ρ∗ = 1, p∗ = 1, u∗ = Ms, λ∗ = 0. (11)

The dimensionless heat release and the activation energy are defined as β = γQ̃/(c̃∗s )2

and Θ = γẼ/(c̃∗s )2 respectively. While it is convenient to carry out the analysis in post-
shock scales, the effect of the scaling is to make the scales dependent on the reaction
zone length and in particular the activation energy. Many results of simulations are
reported for activation energy and heat release scaled with respect to the upstream
condition (Erpenbeck’s scales). Plain E is used to represent the scaled activation
energy E = γẼ/c̃2

0 and plain Q is used to represent the scaled heat release Q = γQ̃/c̃2
0.

The overdrive factor is defined as f = (D/DCJ)
2 where DCJ = D̃∗/c̃0 is the scaled

Chapman–Jouguet detonation velocity given by the formula

DCJ =

√
1 +

(γ2 − 1)Q

2γ
+

√
(γ2 − 1)Q

2γ
. (12)

The spatial structure of λ∗ is obtained by integration of the rate equation as

z =

∫ λ∗

0

u∗(λ)
ω∗(λ)

dλ =
1

k

∫ λ∗

0

u∗(λ)
1− λeΘ/(p

∗/ρ∗)dλ. (13)

The value of k = k̃˜̀∗1/2/c̃
∗
s is fixed by setting z = 1 when λ∗ = 1/2 in the above

integral.

4. The linear stability problem
Here we present the formulation of the linear stability problem that determines

the normal modes. We use cylindrical coordinates attached to the perturbed shock
front. The superscript l is used to indicate variables (rl , θl , zl , tl) represented in the
laboratory frame. Let Ds = D̃∗/c̃∗s be the steady detonation shock velocity scaled by
the steady post-shock sound speed. Next we introduce the shock-attached coordinates
(r, θ, z, t) through the coordinate transformation

z = zl − Dstl − ψ(rl , θl , tl), r = rl , θ = θl, t = tl . (14)

The function ψ represents the shock front displacement from the unperturbed position.
The instantaneous location of the shock front is at z = 0 in the shock-attached
coordinates. Note that the velocity of the shock-attached frame is Ds + ∂ψ/∂t, hence
the particle velocity in the frame is uz = ulz−Ds−∂ψ/∂t. This choice is consistent with
the definition of uz found in the detonation shock dynamics studies that use intrinsic
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shock-attached coordinates, where the shock acceleration of the frame explicitly
appears in the governing equations, see for example, Yao & Stewart (1996). In
previous linear stability works such as Lee & Stewart (1990) and Short & Stewart
(1998), the particle velocity in the steady frame, ulz−Ds (not the z velocity component
in the shock-attached frame) is used instead as the dependent z velocity component,
which follows Erpenbeck’s earlier precedent. The formulation here differs slightly, and
the shock relations, in particular are affected. However either choice could have been
made without any effect on the conclusions.

If we introduce the operators Φ and L defined by

Φ ≡ ur ∂ψ
∂r

+
uθ

r

∂ψ

∂θ
, L ≡ ur ∂

∂r
+
∂uθ

∂r

∂

∂θ
+ (uz − Φ)

∂

∂z
, (15)

then the transformed set of the governing equations becomes

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u− ∂ρΦ

∂z
= 0, (16)

∂ur

∂t
+ L(ur)− u2

θ

r
+

1

γρ

∂p

∂r
− 1

γρ

∂ψ

∂r

∂p

∂z
= 0, (17)

∂uθ

∂t
+ L(uθ) +

uruθ

r
+

1

γρr

∂p

∂θ
− 1

γρr

∂ψ

∂θ

∂p

∂z
= 0, (18)

∂uz

∂t
+ L(uz) +

1

γρ

∂p

∂z
+
∂2ψ

∂t2
= 0, (19)

∂p

∂t
+ L(p) + γp∇ · u− (γ − 1)βρr − γp∂Φ

∂z
= 0, (20)

∂λ

∂t
+ L(λ) = ω. (21)

Here u = (ur, uθ, uz), and in cylindrical polar coordinates, u ·∇ = ur∂/∂r+(uθ/r)∂/∂θ+
uz∂/∂z and ∇ · u = ∂ur/∂r + ur/r + (1/r)∂uθ/∂θ + ∂uz/∂z.

The governing equations can also be written in a matrix form. Let the column
vector q = [ρ, ur, uθ, uz, p, λ]

T . Then the equations in the shock-attached frame can be
recast as

∂q

∂t
+Az · ∂q

∂z
+Ar · ∂q

∂r
+Aθ · 1

r

∂q

∂θ
+
a

r
−Br · ∂q

∂z

∂ψ

∂r
−Bθ · ∂q

∂z

1

r

∂ψ

∂θ
+ b

∂2ψ

∂t2
= c, (22)

where the matrices and column vectors are written out in Appendix A. If the equations
were steady and plane, then the governing equations would simply be Az · ∂q/∂z = c.

The equations are expanded about the steady-state solution and we seek solutions
to the normal mode of the form

q = q∗(z) + q′ exp(αt+ inθ), ψ = ψ′ exp(αt+ inθ), (23)

where the prime superscript implies a small amplitude in a norm associated with
the deviation of the initial conditions from those of plane steady detonation. A
straightforward expansion of the various terms found in (22) combined with the fact
that the steady state only depends on z leads to

αq′ + A∗z · ∂q
′

∂z
+ A∗r · ∂q

′

∂r
+ inA∗θ · 1

r
q′ + A′z · ∂q

∗

∂z

+
a′

r
− B∗r · ∂q

∗

∂z

∂ψ′

∂r
− inB∗θ · ∂q

∗

∂z

1

r
ψ′ + α2b∗ψ′ = c′. (24)
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Since all the perturbations are uniformly the same order (O(ε) say) we can now
consider the primed variables to be the O(1) coefficient functions.

Then the normal modes are separable in r, θ, z by writing

q′ =



ρ′(z)Jn
u′r(z)dJn/dr
u′θ(z)Jn/r
u′z(z)Jn
p′(z)Jn
λ′(z)Jn


and ψ′ = Jn. (25)

Here Jn = Jn(kr) is the Bessel function of the first kind of integer index n, k is the
radial wavenumber to be determined from the boundary condition at the wall and α
is a complex growth rate of perturbations.

It follows from the above form of the normal modes that the ur and uθ equations
yield the relationship

u′θ − inu′r = C exp

(
−α
∫ z

0

dz

u∗z

)
,

where the constant C when found from Rankine–Hugoniot conditions (which imply
u′θ(0) = inu′r(0)) turns out to be zero. Thus

u′θ(z) = inu′r(z) (26)

and once the u′r perturbation is found u′θ follows directly. Thus the system of complex
ODEs is reduced from six to five. Without loss of generality we can take the shock
displacement perturbation amplitude normalized to 1, once we obtain the linearized
equations, since the eigenfunctions are determined up to a multiplicative constant.

The stability equations can be re-written in terms of a new column vector,
f′ = [ρ′, u′r, u′z, p′, λ′]T , representing the complex perturbations, as follows:

αf′ + A∗ · df′

dz
+ C∗ · f′ + b∗ = 0, (27)

where A∗, C∗ and b∗ are given by

A∗ =


uz 0 ρ 0 0
0 uz 0 0 0
0 0 uz 1/(γρ) 0
0 0 γp uz 0
0 0 0 0 uz


∗

, b∗ =


0

−p,z/(γρ)
α2

0
0


∗

, (28)

C∗=


uz,z −k2ρ ρ,z 0 0

0 0 0 1/(γρ) 0

−1/(γρ2)p,z 0 uz,z 0 0

−(γ − 1)β(ω + ρω,ρ) −γk2p p,z γuz,z − (γ − 1)βρω,p −(γ − 1)βρω,λ

−ω,ρ 0 λ,z −ω,p −ω,λ



∗

.

(29)

Note that A∗ follows directly from the definition of A∗z . The matrix C∗ has con-
tributions from all the other A∗ terms. The term b∗ is determined from the shock
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displacement. The reaction rate sensitivities are defined by the expansion of the re-
action rate as ω′ = ω∗,pp′ + ω∗,ρρ′ + ω∗,λλ′, where ω∗,p = Θρ∗ω∗/(p∗)2, ω∗,ρ = −Θω∗/p∗,
and ω∗,λ = −ω∗/(1 − λ∗). Notice, that there is no singularity in the system at any
point, except for the CJ case, for which one of the eigenvalues of A∗ becomes zero at
infinity. The CJ case is treated by a limit as the overdrive factor f approaches 1.

The Rankine–Hugoniot relations (8) are expanded to obtain the conditions at the
shock, which is located at z = 0. Their linearization (with ψ′ = 1) leads to

ρ′ = − 4

(γ + 1)D2Ms

α, u′z =
2− (γ − 1)D2

(γ + 1)D2
α, u′r = − 1

Ms

M2
s − D2

1 + γD2
,

p′ = −4γMs

γ + 1
α, λ′ = 0.

 (30)

The boundary condition at the tube wall is that the radial velocity is zero, ur(r =
a) = 0, where a is the tube radius. It follows then that

dJn(kr)

dr

∣∣∣
r=a

= 0. (31)

Equation (31) determines all possible wavenumbers k = 2xnm/d, where J ′n(xnm) = 0, for
integer n = 0, 1, 2, . . . and m = 1, 2, . . . . (Note that negative n (counter-clockwise spin)
are also admitted, but since the eigenvalues α would be the same as for corresponding
positive n, all conclusions are valid for both clock- and counter-clockwise spins.) In
what follows, n will be identified with the number of spin heads, while m is the radial
mode number such that m − 1 gives the number of zeros of the Bessel function on
0 < r < a. Note that the eigenfunctions given by J0(kr) correspond to axisymmetric
disturbances with u′θ = 0 and ∂/∂θ = 0. An important special case is that of a
one-dimensional disturbance corresponding to k = 0. It satisfies the wall boundary
condition at all a since J ′0(0) = 0. Thus our normal modes include not only spinning
modes, but also axisymmetric non-spinning as well as purely longitudinal modes.

5. The radiation condition
One more condition is required to close the above system of ODEs and derive the

dispersion relation. It is derived from the condition that the initial perturbations are
uniformly bounded in space. Spatial unboundedness of unstable eigenfunctions can
result from the behaviour of the solution at z → −∞. Hence the necessary condition
is identified by considering the linearized system in the rear far field where the steady
flow is constant and the reaction is complete. An alternative interpretation of the
radiation condition is that the intrinsic instability of the detonation is a result of
interaction between the leading shock and the reaction zone only and should not
be affected by disturbances that travel toward the shock from an infinite distance
behind the reaction zone. Hence it is assumed that the disturbance eigenfunctions are
missing the incoming wave family at the end of the reaction zone. In one form or
another, such a condition has been used by many researchers investigating stability of
detonation waves (e.g. Erpenbeck 1962; Buckmaster & Ludford 1989; Lee & Stewart
1990). The radiation condition has a different form in cylindrical coordinates than in
Cartesian coordinates, but it expresses the same physical condition. Note that it is
possible to apply different conditions, such as for example the piston condition u′ = 0
at infinity, but it should be realized that as a result, the instability spectrum would be
altered by the extra interactions of the piston and leading shock compared to that of
the intrinsic mechanism.
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Next, we turn to the derivation of the radiation condition in cylindrical coordinates.
At the end of the reaction zone where the steady solution reaches a constant state
we can set λ′ = 0 because of the reaction rate being negligible and λ′ decaying
exponentially with increasing z. This assumption does not change the overall result
and in Appendix B, we derive the form of the radiation condition where λ′ is
retained. The acoustic solution in the far field has the same radial dependences as in
the normal mode representation in the main flow. But the dependence on time and
the axial coordinate are kept arbitrary.

With these assumptions the acoustic expansion is of the general form q = qb + q̂
where the hat refers to an acoustic perturbation. The ur, uz and p equations define the
acoustic modes and are given by

Lûr +
p̂

γρb
= 0, (32)

Lûz +
1

γρb

∂p̂

∂z
= 0, (33)

Lp̂+ γpb

(
∂ûz

∂z
− k2ûr

)
= 0, (34)

where L ≡ ∂/∂t + ub∂/∂z and the subscript b denotes the burnt state at z → −∞.
(Equation (33) should have the term ∂2ψ/∂t2 on the left-hand side, but since ∂2ψ/∂t2 =
L(∂ψ/∂t), that term is temporarily absorbed into ûz). If we apply the operator L
on equation (34) and make use of equations (32) and (33), then we obtain a single
equation in p̂:

∂2p̂

∂t2
+ 2ub

∂2p̂

∂t∂z
− (c2

b − u2
b)
∂2p̂

∂z2
+ (cbk)

2p̂ = 0. (35)

This is a Klein–Gordon equation, solutions of which represent dispersive travelling
waves. In terms of the characteristic variables ξ = z− (ub + cb)t and η = z− (ub− cb)t
it can also be written as ∂2p̂/∂ξ∂η − (k2/4)p̂ = 0.

We look for a solution of equation (35) which is of the travelling wave form
exp(αt+ sz). Substituting p̂ = exp(αt+ sz) into equation (35) we obtain a dispersion
relation for the complex axial wavenumber s(α),

α2 + 2ubαs− (c2
b − u2

b)s
2 + c2

bk
2 = 0, (36)

which has roots given by

s =
1

c2
b − u2

b

(αub + cb[α
2 + k2(c2

b − u2
b)]

1/2). (37)

Note that in the Chapman–Jouguet limit, f = 1 and D = DCJ and it follows that the
flow state at the end of the reaction zone is sonic with cb = −ub, and (37) reduces to

s = − 1

2ub

(
α+

c2
bk

2

α

)
. (38)

The far-field dispersion relation has two branches of the square root in (37) so
that the unstable disturbances with Re(α) are spatially bounded only if the branch
with positive real part is kept. From the travelling-wave character of solutions to the
Klein–Gordon equation it is clear that the boundedness requirement is equivalent to
elimination of acoustic waves propagating from z → −∞ toward the shock.
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It is worth pointing out that the situation is not different in principle if we consider
the case with a finite reaction zone. Even though the reaction zone does not extend
to infinity, and the spatial unboundedness is of no concern anymore, the radiation
condition is imposed based on the physics of the problem: the development of unstable
perturbations has to occur only due to the interaction between the lead shock front
and the reaction zone. The boundary value problem should now be set up for a finite
domain and the radiation condition be applied at the end of the reaction zone.

Equation (34) can be rearranged as

k2ûr =
α+ ubs

γpb
p̂+

∂ûz

∂z
. (39)

The time dependence of all the variables has to be the same as in (23), i.e. exponential.
The axial dependence is known only upon the solution of the exact normal mode
system, but it has to satisfy the above equation (39). Now, writing s in terms of α from
(37) and inserting p̂ = p′(z) exp(αt), ûz = u′z(z) exp(αt), ûr = u′r(z) exp(αt) into (39) we
obtain the radiation condition

du′z
dz
− k2u′r +

αcb + ub[α
2 + k2(c2

b − u2
b)]

1/2

γρbcb(c
2
b − u2

b)
p′ = 0. (40)

By choosing the positive branch of the square root in this equation we explicitly
eliminate incoming waves at infinity. Note that for CJ detonation the radiation
condition becomes

du′z
dz
− k2u′r +

α− k2c2
b/α

2γρbc
2
b

p′ = 0. (41)

Also, for the one-dimensional case, letting k → 0 we integrate (40) and noting that∫
p′dz = const

∫
exp(sz) dz = p′/s, we obtain the one-dimensional radiation condition

given, for example, in Lee & Stewart (1990) with λ′ set to 0,

u′z + α+
1

γρbcb
p′ = 0. (42)

The extra term α in this equation is due to the definition of the axial velocity which
is different from that in Lee & Stewart (1990). If uLSz denotes the axial velocity in
Lee & Stewart (1990), then uLSz = uz + ∂ψ/∂t and α in (42) comes from ∂ψ/∂t, i.e.∫

(du′z/dz)dz = u′z + α.

6. The numerical solution and techniques for finding roots
The unstable eigenvalues are found by solving the radiation condition (40) nu-

merically by means of the DNSQE subroutine from NIST mathematical software
repository (2001). The subroutine solves a system of nonlinear equations by the Pow-
ell hybrid method, a version of the Newton method. To provide the subroutine with
an initial guess we first determine the approximate location of the roots of (40) by
plotting the magnitude of the left-hand side of (40) (let us denote it H) in some
bounded domain of the complex plane α. This is the ‘carpet search’ method, first
introduced by Lee & Stewart (1990) to find the eigenvalues for the one-dimensional
detonation. The surface of |H | has clear domains of attraction at the locations of the
roots, thus allowing one to obtain the guess from the contour plot of |H |. Once the
guess is supplied to DNSQE, the subroutine then finds the exact value within a given
tolerance (typically 10−6−10−8) iteratively. At each iteration the entire solution of the



190 A. R. Kasimov and D. S. Stewart

ODEs (27) is required. The latter is obtained by means of the DDASSL subroutine
developed by L. Petzold, which can be found at NIST (2001). This subroutine is
based on Gear’s method for stiff differential-algebraic systems. The solution for the
ODEs is again obtained within a given tolerance, which is typically 10−8−10−10. Such
accuracy is necessary in order to achieve proper convergence for the root solver. This
is because of the property of the radiation condition that the domains of attraction of
the roots are extremely small, especially at high frequencies; thus large steps during
iterations can keep the solver wandering around the root or make it leave the domain
entirely. The efficiency of DNSQE and DDASSL for a similar class of problems was
demonstrated by Short & Stewart (1998).

The neutral stability curves are constructed using the arclength continuation
method. In this method each subsequent point on the curve is found over a fixed
length along the curve. This method avoids numerical difficulties associated with
turning points.

7. Discussion of results for spinning instability
Low-frequency spin (i.e. spin detonation with small number of rotating fronts) is

typically observed in experiments with explosive mixtures close to their detonability
limits (usually lean limits) so that the heat effect Q is small compared to that of
a stoichiometric composition. This is the main reason for our focus on the range
of Q between 0 and 20 in the following calculations. Small Q implies that the
detonation speed and therefore post-shock temperature is small. Strong dependence
of the reaction rate on the post-shock temperature leads to a significant increase in the
induction-zone length. As the degree of dilution decreases, the number of spin heads
is observed to grow. For example, in hydrogen–oxygen–argon mixtures, Munday et al.
(1968) found that a single-head spin exists within the range of dilution between 88.8
and 91.9 volume percent of argon, while in the range between 87.0 and 88.8 percent
a four-head spin was observed, bifurcating from the single-head mode at 88.8 percent
argon. Two- and three-head spins were not observed.

We next discuss some of the results of the stability analysis and try to relate
them to the above-mentioned experimental findings. Note that the set of bifurcation
parameters is composed of the heat release Q, activation energy E, overdrive factor f,
adiabatic exponent γ, and the radial wavenumber k (recall that k ≡ 2xnm/d, where xnm
is the mth root of the Bessel function’s derivative, J ′n(xnm) = 0, d is the tube diameter,
n is the number of maxima in the angular direction (number of spinning heads), m−1
gives the number of nodes of Jn(kr) along the radius; thus 2π/k is the characteristic
wavelength in the radial direction). In this paper we do not attempt to cover the entire
space of bifurcation parameters, but rather focus on the detailed analysis of some of
them, choosing others on the basis of experimental knowledge about spin detonation.
In particular, we keep f fixed at f = 1.0, since the experiment indicates that overdrive
tends to suppress spin detonation. Also, we look at only two values of the adiabatic
exponent, γ = 1.3 and γ = 1.6 and two values of the tube diameter, d = 2 and d = 20
(recall that the length scale is the half-reaction length l̃1/2, so that these tube diameters
are twice and twenty times the length of the reaction zone, respectively). We do vary
Q and E since Q is related to the degree of dilution (the higher the degree of dilution
the smaller heat effect Q), and different E represent mixtures of different reactivity.
We vary n and m since these provide a selection of particular modes of spin and,
which is very important for the link between the instability results and experiment,
give us the spin pitch to diameter ratio p/d for the most unstable mode. Finally, we
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m\n 1 2 3 4 5 6 7

1 1.841 3.054 4.201 5.318 6.416 7.501 8.578
2 5.331 6.706 8.015 9.282 10.520 11.735 12.932
3 8.536 9.969 11.346 12.682 13.987

Table 1. First few roots of J ′n(xnm) = 0.

calculate the dependence of the neutrally stable roots on the radial wavenumber k.
This lets us avoid calculating the huge number of discrete modes, labelled with three
indices: n, m, each running from one to infinity, as well as the mode index j in the
temporal spectrum, which can be as large as tens or even hundreds (j labels the roots
α of the radiation condition according to their frequency; for example, j = 1 is the
lowest frequency root, j = 2 is the second lowest frequency root and so on).

First, let us consider the case with fixed values of d = 20, γ = 1.6 and f = 1.0. These
choices are motivated by the following facts from experiments as well as our own
calculations of one-dimensional detonation instability. Experiments show that typical
cell size of cellular detonation is of the order of 10 to 100 reaction-zone lengths (see
e.g. Fickett & Davis 1979), so that we expect the radial wavenumber for the most
unstable mode to be around 0.06 − 0.6. For d = 20, the smallest wavenumber is
k = 2x11/d = 0.184 (see table 1).

The choice of γ = 1.6 is motivated, first, by the experimental results from Gordon
et al. (1959) in which the experiments were carried out mostly in hydrogen–oxygen
mixtures diluted with monatomic inert gases, such as helium and argon, which
render large γ for the mixture (pure helium or argon have γ = 1.67); secondly, our
calculations of one-dimensional instability for various γ indicate that higher γ tends to
strongly stabilize detonations with larger Q while destabilizing, albeit insignificantly,
detonations at smaller Q, as shown in figure 2. The remaining choice, for f = 1.0,
is motivated again by experimental reports such as those in Gordon et al. (1959),
which show that the emergence of spin detonation is most frequent at CJ velocities.
This limit is achieved by computing for values of f close, but not exactly equal, to 1,
namely f = 1.01. In fact, the limit f → 1 is well behaved in the sense that the solution
for the governing equations converges to a limit, although extremely slowly as f
becomes closer to 1. There is no appreciable difference in the results between f = 1.01
and say f = 1.0001, but the latter is prohibitively time-consuming computationally.
Also, we did carry out calculations for γ = 1.3 and d = 2, although in less detail than
for the case with γ = 1.6 and d = 20, and they reveal some additional features of
detonation instability which we shall discuss below.

Figures 3(a) and 3(b) show the neutral stability curves for several spinning modes,
ranging from n = m = 1 to n = 10, m = 1 which corresponds to the range of the radial
wavenumber k from k = 0.184 to k = 1.189. In figure 3(a), the leftmost boundary
(the left-hand solid line) is composed of three neutral stability curves, namely n = 3,
m = 1 below Q = 16.1 and n = 4, m = 1 or n = 1, m = 2 above Q = 16.1. Similarly,
in figure 3(b) the leftmost boundary consists of n = 3, m = 1 below Q = 0.69 (dashed
line), n = 4, m = 1 or n = 1, m = 2 from Q = 0.69 to Q = 8.5 and n = 5, m = 1
from Q = 8.5 to Q = 20. The thick solid line on both figures is the one-dimensional
neutral stability boundary corresponding to k = 0. The horizontal dashes indicate the
bifurcation points. The dotted lines in both figures correspond to several neighbouring
modes below and above the ones which comprise the leftmost boundary. To avoid
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Figure 2. The effect of the adiabatic exponent γ on the one-dimensional neutral stability boundary.
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Figure 3. Neutral stability boundaries the (Q,E)-plane for spinning modes in a tube with diameter
d = 20 at (a) γ = 1.6, (b) γ = 1.3.

cluttering we show only those curves which are in the neighbourhood of the leftmost
boundary.

The main features of figures 3(a) and 3(b) are, first, that there exist spinning modes
which are more unstable than (are to the left of) one-dimensional modes in the entire
range of Q and E under investigation, and second, there exists a leftmost mode,
perhaps different for different Q, such that all modes below and above it are less
unstable. As we change Q, we may encounter bifurcations between different modes
as indicated by the horizontal dashes in figure 3. In addition, note that many neutral
stability curves are not far from the leftmost boundary, i.e. corresponding unstable
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Figure 4. Steady-state profiles (a) and real parts of eigenfunctions, (b) and (c), at Q = 0.69,
E = 23.23, γ = 1.3 and d = 20 (corresponds to the bifurcation point in figure 3b). In (b) and (c) the
solid line is Re(ρ′), dashed Re(u′r), dash-dot Re(u′z), thin solid Re(p′) and long dash Re(λ′).

modes have a growth rate very close to the largest one. In fact, the larger the tube
diameter the closer the neutral stability curves are to each other and many different
modes will have growth rates near the maximum. In contrast, if the tube diameter
is small, but still large enough so that spinning instability overtakes one-dimensional
instability (see below), then the bifurcations are more pronounced.

Figure 4 shows the steady-state flow profiles and neutrally stable eigenfunctions
corresponding to two leftmost modes n = 3, m = 1 and n = 4, m = 1 at the bifurcation
value of Q = 0.69 and E = 23.23 in figure 3(b). The temporal frequencies of the two
modes are Im(α) = 0.3798 for n = 3 and Im(α) = 0.4499 for n = 4. It is seen that
there is little qualitative change in the behaviour of the eigenfunctions for the two
modes, except the amplitudes are somewhat larger for n = 4 mode. The eigenfunctions
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Figure 5. E, k neutral stability curves for the first few roots at Q = 10 and (a) γ = 1.6, (b) γ = 1.3.

shown in figures 4(a) and 4(c) are in fact only the axial amplitudes. The corresponding
angular and radial parts reveal a significant change in the three-dimensional shape of
the perturbation: n = 3 represents a wave with three crests in the azimuthal direction
while there are four crests for the case with n = 4.

In order to find out behaviour of neutral stability curves for higher modes (hence
larger k), we trace the neutrally stable roots as k is varied at some fixed Q. For
example, we pick a value of Q = 10 in figure 3(a) and starting from the one-
dimensional neutral stability curve (k = 0) calculate the dependence of E on k. The
result is shown in figure 5(a). Figure 5(b) shows similar curves corresponding to
figure 3(b). The numbering of the curves corresponds to the order in the temporal
spectrum, i.e. 1 is the lowest frequency root, 2 is the next and so on. Several important
conclusions can be drawn from these figures. First, the low-k behaviour which is
shown in figures 3(a) and 3(b) with a distinct leftmost neutral stability boundary,
terminates for the case with γ = 1.3 due to the mode j = 2 becoming more unstable
at much larger k, and hence much larger n and m. This means that at Q = 10 and
γ = 1.3 we have high-frequency instability dominant. This may be the reason for the
experimental observation that when the mixture becomes more energetic (less dilute),
the low-frequency spin detonation turns into a detonation with a ‘rippled irregular
front’ (e.g. Munday et al. 1968; Duff 1961). (The peculiar behaviour of the second
root in figure 5(a) and third root in figure 5(b) which exhibit loops is indicative
of the complicated mathematical structure of the dispersion relation and is not of
a numerical origin – hundreds of points are calculated along the loops alone, with
tolerances on the order of 10−8–10−9.) Note, that there is a region of smaller Q
for which low-frequency instability prevails as figures 6(a) and 6(b) show. Thus at
sufficiently small Q there is no high-frequency instability.

The case with γ = 1.6 does not show the high-frequency instability, at least in
the reasonable range of k. (The reader should realize that this work can offer no
guarantee that at much larger k we do not obtain again the high-frequency mode
being the leftmost boundary, especially in view of the peculiarities of the dispersion
relation. The reason is that it is prohibitively expensive to compute large-k limit,
because the eigenfunctions become highly oscillatory – their frequency Im(αi) grows
linearly with k as k →∞. An asymptotic solution, similar to that of Erpenbeck 1966,
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would in principle answer the question, but the analysis is rather involved and has
yet to be satisfactorily resolved even for the simpler two-dimensional planar case).
When the neutral stability boundary corresponds to the turning point for root 1 in
figure 5(a), it means that there exists a specific wave shape, with specific k = kc
(inverse of the radial wavelength), nc (number of spinning heads), and mc which has
the maximum growth rate. From figure 5(a) we find kc = 0.45 and from figure 3(a)
nc = 3 and mc = 1.

Further support for the results having direct relevance to spin detonation is fur-
nished by figure 7 which shows how the spin pitch to diameter ratio varies along the
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neutral stability curves in figure 3(a) for the modes with n = 3, m = 1 and n = 4,
m = 1, which are the most unstable modes within the range of Q from 0 to 20. The
ratio is calculated based on the temporal frequency αi = Im(α) of a neutrally stable
root as

p

d
=

2πnD∗s
αid

.

The predicted values are in good agreement with experiment with p/d being close to
3 for a low-frequency spin and being generally about 3 to 6 (cf. Gordon et al. 1959).

The values of p/d measured in experiments are for detonation with larger (non-
linear) shock displacement than can be predicted simply from linear stability theory.
And directly relating the frequencies of the linear perturbations to those of the actual
nonlinear spin detonation is not entirely correct and the comparison is more properly
regarded as an order of magnitude comparison. This caveat made, it is also worth
pointing out that the pitch ratio is essentially determined by the imaginary part of the
complex growth rate αi. Research that dates back to Erpenbeck’s original calculations
of the frequency of unstable one-dimensional (galloping) detonation and comparison
with Fickett and Wood’s direct simulation, see Fickett & Davis (1979), have shown
that the frequency of the instability from stability theory is often maintained as a
feature of the large-amplitude manifestation of the instability. Many researchers have
shown this subsequently in the past ten years (see e.g. Short & Quirk 1997).

Figure 8 shows the case of a small tube diameter d = 2 and γ = 1.3. First, note
that the smallest radial wavenumber is now k = 2x11/d = 1.841 and according
to figure 5(b) there exists no part of the curve below k = 1.841, except a single
point at k = 0, and hence no turning point region. That is why at sufficiently small
Q the one-dimensional instability dominates, while at larger Q the high-frequency
modes are more unstable. This result indicates that detonation of sufficiently dilute
mixtures (small Q) in sufficiently small tubes would exhibit pulsating instability and
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Figure 9. The effect of the tube diameter on the detonation stability at Q = 5, γ = 1.6.

thus lead to galloping detonation. This is also in agreement with experiment, see
for example, Voitsekhovskii et al. (1963), Strehlow (1978), Fickett & Davis (1979),
Vasiliev (1991).

Next we discuss what happens as we change various bifurcation parameters.
Consider the effect of the tube diameter. The role of the tube diameter can be
determined from E, k neutral stability diagrams. For example, consider the case
shown in figure 6(a), which corresponds to a mixture with Q = 5 and γ = 1.6. The
question we want to answer is: How does the most unstable mode change if the tube
diameter is changed for a given explosive mixture? Do we observe bifurcations from
one spinning mode to a different one if we change the tube diameter?

If we begin with a very small diameter d that corresponds to a pulsating (k = 0)
instability and increase the diameter, then a sequence of bifurcations occurs from
lower-mode spin to a higher-mode spin as shown in figure 9. The one-dimensional
instability exists to the right of the vertical line in figure 9. The dotted curve is the E, k
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neutral stability curve from figure 6(a). But for a finite tube diameter, the variations
of k are discrete, and they are shown by circles, labelled 1, 2, 3, and so on, and their
order corresponds to an increase in the neutrally stable modes with increasing radial
wavenumber k = 2xnm/d. At d = 2 the lowest spinning mode is n = 1, m = 1 (point
1 in figure 9) and corresponds to k = 1.841, and that point is to the right of the
one-dimensional boundary, which means that in this tube the pulsating instability is
dominant. As the tube diameter is increased to d = 4, the wavenumber k of the first
spinning mode becomes equal to 0.92 and thus point 1 crosses the vertical line and
becomes more unstable than the one-dimensional mode. Thus as the tube diameter is
increased, the single-head spinning mode is more unstable than the pulsating mode.
Note that all the remaining modes remain to the right of the vertical line and are less
unstable than the k = 0 mode. However, if we increase the tube diameter further, more
and more points cross the line and become more unstable than the one-dimensional
mode. When the turning point is reached, the lower-frequency modes retreat to the
right and start piling up at the origin of the vertical line at k = 0. At any fixed tube
diameter, the mode which is leftmost corresponds to the most unstable mode. We
find that the increase in tube diameter results in higher and higher modes being the
most unstable.

Next consider the limit of a large tube diameter d → ∞. In this limit the distance
between neighbouring roots xnm goes to zero, and hence we have a near-continuous
variation of k. Still, figure 6(a) is in force with its turning point. Thus, no mat-
ter what the diameter is (if sufficiently large), there exists a characteristic radial
wavenumber kc (e.g. kc ≈ 0.46 at Q = 5 in figure 6a) for which the perturbation is
most unstable. This corresponds to a certain pair of numbers n, m dependent on d
(which can be found from xnm = kcd/2); however we emphasize that the wavelength
in the radial direction becomes independent of d as d→∞, as it clearly should. At
large kcr the Bessel function Jn(kcr) can be approximated by its asymptotic form
Jn(kcr) ∼

√
2/(πkcr) cos(kcr − πn/2− π/4), from which it is clear that the character-

istic wavelength of the most unstable mode is λc = 2π/kc ≈ 13.7. Thus, we conclude
that the transverse cell size is about 14 times the size of the reaction zone at these
particular values of Q = 5 and γ = 1.6. In general, we expect kc to be a function of
Q and γ, and thus we can write that

λ̃c =
2π

kc(Q, γ)
l̃1/2.

The value of kc(Q, γ) can be determined from the stability analysis, l̃1/2 is determined
by the kinetics and thermodynamic properties of the mixture.

It is interesting to compare the wavelength predicted by the above formula with
experiment and numerical calculations. If we take the data from the detonation
database at Caltech (Kaneshige, Shepherd & Teodorczyk 1997), and the steady
reaction-zone length calculated using the detailed chemical mechanism, we have the
following data for 2H2 + O2 + 26Ar (90%Ar): in the fresh mixture γ0 = 1.64, in the
von Neumann state γvN = 1.6, effective heat release and activation energy are Q ≈ 7
and E ≈ 34, respectively. The experimental value of the cell width λw is about 40 mm
and the length of the reaction zone lrz (based on maximum temperature gradient) is
1.23 mm. Their ratio gives λw/lrz = 33, which differs from that predicted by the linear
analysis by about a factor of 2. The difference can be attributed to many factors, for
example to the ambiguities in the definitions of various quantities such as the effective
activation energy E and γ. But this comparison should be regarded as an order of
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magnitude comparison and in that sense the agreement is good. More accurate and
careful comparison can be made.

Dilution affects the stability characteristics most significantly through its relation-
ship to the heat release Q and γ. If the diluent is a monatomic gas, then we expect
large values for γ. Lighter diluents such as helium would also increase the sound
speed c̃0 in the fresh mixture, thus Q, which is non-dimensionalized with respect to
c̃2

0/γ, will be small not only because of dilution, but also due to the large sound speed
in the mixture. Thus in a wide range of dilutions for helium-diluted mixtures, the
low-frequency spin can be expected. Heavier diluents, especially polyatomic, would
result in smaller γ as well as larger Q, which both correspond a large number of
high-frequency unstable modes and thus would favour irregular detonation fronts. We
can see in figures 3(a) and 3(b) that as Q is increased, which can be due to decrease
in dilution, there are bifurcations from lower- to higher-frequency branches.

Now let us discuss what the effect of mixture initial pressure is on the spin
detonation. One of the ways the spin detonation is observed experimentally is by
lowering the initial pressure p0 of a mixture in a tube of fixed diameter and at fixed
mixture composition. As the pressure is decreased, a cellular detonation transforms
into spin detonation after the cell size, which increases with decrease in pressure,
becomes comparable to the tube diameter. The effect of the initial pressure p0 of
a fresh mixture cannot be directly calculated in our model and has to be inferred
from other results. The reason is that p0 is absent in the model entirely due to the
first order of the reaction rate, but since typically for realistic kinetics the length
of the reaction zone is inversely proportional to p0, the variations of the initial
pressure can be related to those of the reaction zone. For example, if l̃1/2 ∼ 1/p0,

then the non-dimensional tube diameter d = d̃/̃l1/2 ∼ d̃p0. Hence lowering p0 at

fixed d̃ is equivalent to decreasing d̃ at fixed p0 and so we can infer the role
of the initial pressure from the effect of the tube diameter. In fact, p0 plays a
more complex role as its variation shifts the equilibrium composition of detonation
products with an accompanying change in the heat effect and detonation velocity.
However those dependences are beyond the scope of the constitutive model used in
this study.

8. Conclusions
We have investigated the instability of a one-dimensional detonation wave propa-

gating in a cylindrical tube to three-dimensional linear perturbations using the normal
mode approach. The instability spectra are calculated exactly using a high-accuracy
ODE solver for the eigenfunctions and a Newton–Raphson root solver for the
radiation condition. The analysis shows the existence of spinning unstable modes
and bifurcations from lower-frequency spin to higher-frequency spin as the mixture
becomes more energetic with larger heat release Q. The behaviour of the unstable
modes with respect to the variations of the bifurcation parameters of the problem
strongly supports the possibility of the spinning instability being at the origin of the
well-known spin detonation.
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Appendix A. Definition of Az,Ar,Aθ, a,Br,Bθ, b, c
The following square matrices and column vectors are used to write the governing

equations in shock-attached coordinates in vector form:

Az =


uz 0 0 ρ 0 0
0 uz 0 0 0 0
0 0 uz 0 0 0
0 0 0 uz 1/(γρ) 0
0 0 0 γp uz 0
0 0 0 0 0 uz

 , Ar =


ur ρ 0 0 0 0
0 ur 0 0 1/(γρ) 0
0 0 ur 0 0 0
0 0 0 ur 0 0
0 γp 0 0 ur 0
0 0 0 0 0 ur

 ,
(A 1)

Aθ =


uθ 0 ρ 0 0 0
0 uθ 0 0 0 0
0 0 uθ 0 1/(γρr) 0
0 0 0 uθ 1/(γρ) 0
0 0 0 γp uθ 0
0 0 0 0 0 uθ

 , ar =


ρur
−uθ/r
uruθ/r

0
0
0

 . (A 2)

Br =


ur ρ 0 0 0 0
0 ur 0 0 1/(γρ) 0
0 0 ur 0 0 0
0 0 0 ur 0 0
0 γp 0 0 ur 0
0 0 0 0 0 ur

 , Bθ =


uθ 0 ρ 0 0 0
0 uθ 0 0 0 0
0 0 uθ 0 1/(γρ) 0
0 0 0 uθ 0 0
0 0 γp 0 uθ 0
0 0 0 0 0 uθ

 ,
(A 3)

b =


0
0
0
1
0
0

 , c =


0
0
0
0

(γ − 1)ρβω
ω

 . (A 4)

Appendix B. Radiation condition including perturbations of the reaction
rate

If we separate the angular and radial dependences of the perturbations as in
equations (23) and (25) and use the relationship ûθ = inûr , then we obtain the
following acoustic system in the amplitudes of perturbations depending only on t
and z:

∂ûr

∂t
+ ub

∂ûr

∂z
+

p̂

γρb
= 0, (B 1)

∂ûz

∂t
+ ub

∂ûz

∂z
+

1

γρb

∂p̂

∂z
+
∂2ψ̂

∂t2
= 0, (B 2)

∂p̂

∂t
+ ub

∂p̂

∂z
+ γpb

(
∂ûz

∂z
− k2ûr

)
− (γ − 1)βρbω

b
,λλ̂ = 0. (B 3)
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Note, that since the continuity equation is the only one containing the density
perturbation, it is not needed in the following analysis. Also, ∂2ψ̂/∂t2 can always be
absorbed into ûz so that ûz → ûz + ∂ψ̂/∂t and the equations retain their form, hence

it will be dropped in the following derivations. Here λ̂ = exp(αt+ kzz) is the Fourier

component of the solution of the equation for λ̂.
The above system can be written in matrix form as

∂f

∂t
+ A · ∂f

∂z
+ B · f = bλ̂, (B 4)

where locally we define

f =

 ûr

ûz

p̂

 , A =


ub 0 0

0 ub
1

γρb

0 γρbc
2
b ub

 ,

B =


0 0

1

γρb

0 0 0

−γρbk2c2
b 0 0

 , b =

 0

0

a0

 (B 5)

and a0 = (γ−1)βρbω
b
,λ, c

2
b = pb/ρb, α = ωb

,λ−kzub. The system (B 4) can be diagonalized
if written in terms of the Riemann invariants ri = l i · f, i.e. the dot products of the
left-hand eigenvectors of the matrix A and the vector f. The eigenvectors are

l1 = [0, γρbcb, 1], l2 = [1, 0, 0], l3 = [0,−γρbcb, 1]. (B 6)

Then we obtain l i · A = mil i with

m1 = ub + cb, m2 = ub, m3 = ub − cb, (B 7)

and the diagonalized system in ri becomes

∂ri

∂t
+ mi

∂ri

∂z
+ b1i = b2iλ̂ for i = 1, 2, 3, (B 8)

where

r =

 p̂+ γρbcbûz

ûr

p̂− γρbcbûz

 , b1 = l ·B ·f =


−γρbc2

bk
2ûr

p̂

γρb

−γρbc2
bk

2ûr

 , b2 = l ·b =

 a0

0

a0

 . (B 9)

If we denote L+ = ∂/∂t + (ub + cb) ∂/∂z, L− = ∂/∂t + (ub − cb) ∂/∂z, and L0 =
∂/∂t+ ub ∂/∂z = 1

2
(L+ +L−), the equations for ri can be written in expanded form as

L+(r1)− γρbc2
bk

2r2 = a0λ̂, (B 10)

L0(r2) +
1

2γρb
(r1 + r3) = 0, (B 11)

L−(r3)− γρbc2
bk

2r2 = a0λ̂. (B 12)
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If we take L− of (B 10), L+ of (B 12), add them, and make use of (B 11), we obtain
a single equation in r1 + r3 = 2p̂, which is the non-homogeneous Klein–Gordon
equation,

∂2p̂

∂t2
+ 2ub

∂2p̂

∂t∂z
− (c2

b − u2
b)
∂2p̂

∂z2
+ (cbk)

2p̂− a0ω
b
,λe

αt+kzz = 0. (B 13)

The solution of this equation is

p̂ = A1e
αt+sz + A0e

αt+kzz , (B 14)

where A1 is an unknown constant, A0 = a0ω
b
,λ/((ω

b
,λ)

2 + (k2 − k2
z )c

2∞). The complex
wavenumber s is given by equation (37) and satisfies the boundedness condition as
discussed in the main text above.

If we now add equations (B 10) and (B 12) and write L+ and L− explicitly, we
obtain the following equation:

∂p̂

∂t
+ ub

∂p̂

∂z
+ γρbc

2
b

∂ûz

∂z
− γρbc2

bk
2ûr = a0λ̂. (B 15)

We separate the exponential time dependence as p̂ = p′ exp(αt) and so on, to obtain

αp′ + ub
dp′

dz
+ γρbc

2
b

du′z
dz
− γρbc2

bk
2u′r = a0λ

′. (B 16)

Differentiating (B 14) we obtain

dp′

dz
= s(p′ − A0λ

′) + A0kzλ
′. (B 17)

Inserting this expression into (B 16) we obtain the general radiation condition

du′z
dz
− k2u′r +

α+ sub

γρbc
2
b

p′ − µλ′ = 0, (B 18)

where

µ =
γ − 1

γ

βωb
,λ

c2
b

[
1 +

ωb
,λ(s− kz)

(ωb
,λ)

2 + (k2 − k2
z )c

2
b

]
(B 19)

and kz = (ωb
,λ − α)/ub.

In some previous studies the term proportional to λ′ has been dropped on the
grounds of its presumed exponential smallness in the burnt region. It is clear from
(B 19) that µ = O(ωb

,λ) = O(k exp(−Θ/c2
b)), provided that other factors, including the

term in the square bracket are O(1). The function λ′(z) decays exponentially to zero
as z → −∞ since then λ′ ∼ exp(kzz) ∼ exp(Re(kz)z) and Re(kz) = −(αr − ωb

,λ)/ub > 0.
Thus the assumption is justified provided µ = O(1), which is true at finite values
of Θ.

Reduction of the radiation condition (B 18) to the one-dimensional case can be
done through integration of (B 18) over z at k = 0 and shows that it is exactly the
same condition as given in Lee & Stewart (1990). One should only keep in mind that∫

(du′z/dz)dz = u′z + α which is due to the difference in definitions of uz .

REFERENCES

Bone, W. A., Fraser, R. P. & Wheeler, W. H. 1935 Photographic investigations of flame movements
in gaseous explosions. Part VII – the phenomenon of spin in detonations. Phil. Trans. R. Soc.
Lond. A 235, 29–68.



Spinning instability of gaseous detonations 203

Bourlioux, A. & Majda, A. J. 1992 Theoretical and numerical structure for unstable two-
dimensional detonations. Combust. Flame 90, 211–229.

Bourlioux, A. & Majda, A. J. 1995 Theoretical and numerical structure of unstable detonations.
Phil. Trans. R. Soc. Lond. A 350, 29–68.

Buckmaster, J. D. & Ludford, G. S. S. 1986 The effect of structure on the stability of detonations
I. Role of the induction zone. In Twenty-first Symp. (Intl) on Combustion, pp. 1669–1676. The
Combustion Institute.

Campbell, C. & Woodhead, D. W. 1926 The ignition of gases by an explosion wave. I. Carbon
monoxide and hydrogen mixtures. J. Chem. Soc. 129, 3010–3021.

Campbell, C. & Woodhead, D. W. 1927 Striated photographic records of explosion waves. J. Chem.
Soc. 130, 1572–1578.

Chu, B. T. 1956 Vibration of the gaseous column behind a strong detonation wave. In Gas Dynamics
Symposium on Aerothermochemistry. Northwestern University Press, Evanston.

Duff, R. E. 1961 Investigation of spinning detonation and detonation stability. Phys. Fluids 4,
1427–1433.

Erpenbeck, J. J. 1962 Stability of steady-state equilibrium detonations. Phys. Fluids 5, 604–614.

Erpenbeck, J. J. 1964 Stability of idealized one-reaction detonations. Phys. Fluids 7, 684–696.

Erpenbeck, J. J. 1966 Detonation stability for disturbances of small transverse wavelength. Phys.
Fluids 9, 1293–1306.

Fay, J. A. 1952 A mechanical theory of spinning detonation. J. Chem. Phys. 20, 942–950.

Fickett, W. & Davis, W. C. 1979 Detonation. University of California Press.

Gordon, W. E., Mooradian, A. J. & Harper, S. A. 1959 Limit and spin effects in hydrogen-oxygen
detonations. In Seventh Symp. (Intl) on Combustion, pp. 752–759. The Combustion Institute.

Kaneshige, M., Shepherd, J. E. & Teodorczyk, A. 1997 Detonation database at Explosion
Dynamics Laboratory, Caltech. http://www.galcit.caltech.edu/EDL/.

Lee, H. I. & Stewart, D. S. 1990 Calculation of linear detonation instability: one-dimensional
instability of plane detonation. J. Fluid Mech. 212, 103–132.

Manson, N. 1946 On the structure of so-called helical detonation waves in gaseous mixtures. C. r.
hebd. Sanc. Acad. Sci. Paris 222, 46–51.

Matkowsky, B. J. & Olagunju, D. O. 1982 Spinning waves in gaseous combustion. SIAM J. Appl.
Maths 42, 1138–1156.

Munday, G., Ubbelohde, A. R. & Wood, I. F. 1968 Fluctuating detonations in gases. Proc. R. Soc.
Lond. A 306, 171–178.

NIST 2001 Mathematical software repository, http://gams.nist.gov.

Pukhnachev, V. V. 1963 The stability of Chapman-Jouguet detonations. Sov. Phys. Dokl. 8 (4),
338–340.

Schott, G. L. 1965 Observations of the structure of spinning detonation waves. Phys. Fluids 8,
850–865.

Short, M. & Quirk, J. J. 1997 On the nonlinear stability and detonability limit of a detonation
wave for a model 3-step chain-branching reaction. J. Fluid Mech. 339, 89–119.

Short, M. & Stewart, D. S. 1998 Cellular detonation stability. Part 1. A normal-mode linear
analysis. J. Fluid Mech. 368, 229–262.

Sivashinsky, G. 1981 On spinning propagation of combustion waves. SIAM J. Appl. Maths 40,
432–438.

Strelow, R. A. 1978 Fundamentals of Combustion. Kreiger.

Vasiliev, A. A. 1991 The limits of stationary propagation of gaseous detonation. In Dynamic
Structure of Detonations in Gaseous and Dispersed Media (ed. A. A. Borisov). Kluwer.

Voitsekhovskii, B. V., Mitrofanov, V. V. & Topchian, M. Y. 1963 Structura Fronta Detonatsii v
Gasakh. Akad. Nauk SSSR. Translation: 1966 The Structure of Detonation Fronts in Gases.
Report FTD-MTD-64-527, Foreign Technology Division, Wright Patterson Air Force Base,
Ohio (AD 633–821).

Yao, J. & Stewart, D. S. 1996 On the dynamics of multi-dimensional detonation waves. J. Fluid
Mech. 309, 225–275.

Zhang, F. & Gronig, H. 1991 Spin detonation in reactive particles-oxidizing gas flow. Phys. Fluids
A 3, 1983–1990.


